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In the past, the study of reaction-diffusion systems has greatly contributed to our understanding of the
behavior of many-body systems far from equilibrium. In this paper, we aim at characterizing the properties of
diffusion-limited reactions both in their steady states and out of stationarity. Many reaction-diffusion systems
have the peculiarity that microscopic reversibility is broken such that their transient behavior cannot be
investigated through the study of most of the observables discussed in the literature. For this reason, we
analyze the transient properties of reaction-diffusion systems through a specific work observable that remains
well defined even in the absence of microscopic reversibility and that obeys an exact detailed fluctuation
relation in cases where detailed balance is fulfilled. We thereby drive the systems out of their nonequilibrium
steady states through time-dependent reaction rates. Using a numerical exact method and computer simula-
tions, we analyze fluctuation ratios of the probability distributions obtained during the forward and reversed
processes. We show that the underlying microscopic dynamics gives rise to peculiarities in the configuration-
space trajectories, thereby, yielding prominent features in the fluctuation ratios.
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I. INTRODUCTION

Understanding general properties of systems that are far
from equilibrium remains one of the most challenging prob-
lems in contemporary physics. In recent years, some remark-
able progress has been made in the study of fluctuations in
nonequilibrium small systems �see, e.g., �1–24��. This
progress is mainly due to the formulation of various exact
fluctuation and work theorems that provide very generic
statements that hold true for large classes of systems. Some
of the fluctuation theorems deal with the rate of entropy pro-
duction, either in systems that are in a nonequilibrium steady
state �2,3� or in systems that initially are in equilibrium be-
fore being driven out of equilibrium by an external force
�6,8�. One also distinguishes between detailed �9,11,14� and
integral �4,12,15� fluctuation theorems in cases where the
system is driven from one steady state to another in finite
time. In addition, work theorems �4,5,9� relate the free-
energy difference between two equilibrium states to the
amount of work done during the switching from one state to
the other. Many of these theorems have been verified in vari-
ous experimental settings �17–24�, thus, illustrating their use-
fulness for characterizing nonequilibrium systems.

In the past, diffusion-limited reaction systems have been
proven to be extremely useful in order to understand the
generic behavior of many-body systems far from equilib-
rium. Especially, the study of these systems is at the origin of
our understanding of the properties of nonequilibrium phase
transitions �25,26�. Whereas phase transitions in reaction-
diffusion systems are by now very well characterized, this is
quite different away from these special points. In the present
work, we discuss different ways of characterizing the steady-
state and transient properties of generic reaction-diffusion
systems, thus, contributing to a more comprehensive under-
standing of these important systems.

Recently, discussed extensions of exact fluctuation theo-
rems to nonequilibrium systems with chemical reactions
mostly focused on reversible reactions and reaction networks

�27–33�. However, many reaction-diffusion models are char-
acterized by irreversible reactions, thus, yielding a breaking
of the usually assumed microscopic reversibility. By break-
ing microscopic reversibility, we mean that if ��Ci→Cj� is
the transition probability from configuration Ci to configura-
tion Cj, it can happen that ��Ci→Cj�=0 even though ��Cj
→Ci��0. A direct consequence of the absence of micro-
scopic reversibility is that many observables discussed in the
context of fluctuation theorems are then ill defined, as in
their derivation one explicitly uses that for any path in con-
figuration space the reversed path also exists �34,35�. For this
reason, we focus in our study of fluctuations in reaction-
diffusion systems on an observable that is well defined even
in the absence of microscopic reversibility. For a system ini-
tially in an equilibrium steady state, this quantity is identical
to the work observable used in the Jarzynski and Crooks
relations �4,5,10�.

It should be noted that diffusion-limited systems with ef-
fective irreversible reactions can be prepared through a fast
evacuation of some of the reaction products. This makes
plausible a possible future verification of the intriguing fea-
tures that are revealed in our study.

In the following, we discuss, using a numerical exact
method and numerical simulations, steady-state and transient
properties of various reaction-diffusion systems. Especially,
we study fluctuations in systems that are initially in a steady
state before being driven away from stationarity by varying
one of the reaction rates. This protocol allows us to measure
the probability distribution �PD� of our observable when go-
ing from a steady state A, characterized by the value rA of
some reaction rate r, to another steady state B, characterized
by the value rB of the same reaction rate. Defining the re-
versed process as changing the reaction rate backward from
rB to rA, we can measure also the probability distribution in
that case and compare the distributions for the forward and
reversed processes. Even though no exact detailed fluctua-
tion theorem is observed for the studied quantity in the ab-
sence of detailed balance, we show that the fluctuation ratios
�FRs� display intriguing signatures due to the specific dy-
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namics of the nonequilibrium systems under investigation.
A brief account of some of our results has been given

previously �36�. In the present paper, we not only give a
detailed study of the features observed in the ratio of the
probability distributions for our observable, we also extend
our investigation to other reaction schemes not studied pre-
viously. This allows us to gain a better understanding of
fluctuations in truly nonequilibrium systems driven away
from stationarity and to make the discussion in �36� more
quantitative.

Our paper is organized in the following way. In the next
section, we introduce the different reaction-diffusion models
and discuss their steady-state properties. In Sec. III, we drive
these systems out of stationarity through time-dependent re-
action rates. Using an observable that remains well defined
even in the absence of microscopic reversibility, we study the
probability distributions for this variable and show that the
fluctuation ratios formed by the probability distributions
computed in the forward and the reversed processes display
features which can be related to the dynamical properties of
the nonequilibrium system. Finally, Sec. IV gives our sum-
mary as well as an outlook on open problems.

II. MODELS AND THEIR STEADY-STATE PROPERTIES

We consider one-dimensional lattices made up of L sites
with periodic boundary conditions, where every lattice site
can at most be occupied by one particle. Because of the
exclusion of multiple occupancy of the lattice sites, a total of
2L configurations exist. Particles are allowed to jump to un-
occupied nearest-neighbor sites with a diffusion rate D and
undergo various creation and annihilation reactions. We dis-
cuss in the following four basic reaction schemes �see Table
I�, and we denote with models 1, 2, 3, and 4 the four models
that result from these reaction schemes. In all four models,
we have an annihilation process, that takes place with rate �,
as well as a creation process, where a new particle is created

with rate h. The different models differ by the way creation
and annihilation take place. Let us first discuss the annihila-
tion process. In models 1 and 2, two particles on neighboring
sites undergo a reaction, which leads to the destruction of
one of the particles. This is different in model 3, where both
particles are destroyed at the same time. Finally, in model 4
three neighboring particles are destroyed in the annihilation
reaction. For the creation process, we note that whereas in
models 2, 3, and 4 new particles are spontaneously created at
empty sites, in model 1 a new particle can only be created at
an empty site if one of the neighboring sites is already occu-
pied.

These creation and annihilation processes have been cho-
sen in such a way that the models present different degrees
of microscopic reversibility. Thus, in model 1 all reactions
are reversible, and it is easy to see that this model is in
chemical equilibrium for fixed values of the reaction and
diffusion rates. Indeed, if both � and h are different from
zero, the reaction scheme reduces to a unique reversible re-
action and detailed balance is fulfilled. Model 2, on the other
hand, does allow for some reactions to be irreversible. For
example, a new particle can be created in the middle of two
empty sites 000→0A0, with rate h, but it is not possible to
go back immediately to three empty sites, as the newly cre-
ated particle needs a neighbor for the annihilation process to
take place. Finally, all reactions are irreversible in models 3
and 4, yielding a complete absence of microscopic reversibil-
ity.

We also studied variants of model 2, 3, and 4 called 2�,
3�, and 4�, where we restore microscopic reversibility by
allowing the reversed processes to take place with rates �hh
and ���, where 0��h, ���1. Even though all reactions are
now reversible, these models do not fulfill detailed balance
for �h, ���1 and are therefore still nonequilibrium models.

For all our models, the dynamics is described by a
discrete-time master equation for the probability P�Ci , t� that
the system is in configuration Ci at time t �37�

P�Ci,t + 1� − P�Ci,t� = �
j

���Cj → Ci�P�Cj,t�

− ��Ci → Cj�P�Ci,t�� . �1�

Zia and Schmittmann �38,39� pointed out that for this type of
systems, a nonequilibrium steady state is characterized by
both the stationary probability distribution Ps�Ci� and the
stationary probability currents

K��Ci,Cj� = ��Cj → Ci�Ps�Cj� − ��Ci → Cj�Ps�Ci� �2�

between two configurations Ci and Cj.
The stationary probabilities are readily obtained for fixed

reaction and diffusion rates by setting up the transition-
probability matrix W, whose elements are the transition rates
between different configurations. Of course, as we have 2L

configurations for a system of size L, the transition-
probability matrix is a 2L�2L matrix. The stationary prob-
abilities are then obtained as the elements of the null eigen-
vector of the Liouville matrix L, which results when
subtracting off the identity matrix from the transition-
probability matrix. For systems that are small enough, this

TABLE I. The different reaction schemes discussed in this
work. Whereas model 1 is an equilibrium model, in models 2, 3,
and 4 microscopic reversibility is partly or fully broken. In the
modified models 2�, 3�, and 4�, we allow for reversible reactions
with rates �hh and ���, with 0��h�1 and 0����1.

Model 1 Model 2 Model 3 Model 4

A+A→
�

0+A A+A→
�

0+A A+A→
�

0+0 A+A+A→
�

0+0+0

A+0→
h

A+A 0→
h

A 0→
h

A 0→
h

A

Model 2� Model 3� Model 4�

A+A�
���

�

0+A A+A�
���

�

0+0 A+A+A�
���

�

0+0+0

0�
�hh

h

A 0�
�hh

h

A 0�
�hh

h

A
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eigenvalue problem can be solved using standard algorithms.
For larger system sizes, the stationary probabilities can be
measured through standard Monte Carlo simulations.

We show in Fig. 1 the stationary probability distributions
for some of the models and various values of the reaction
rates. Configurations with the same number of particles are
grouped together, with the empty configuration to the left
and the fully occupied lattice to the right. The first thing to
note is that a change in reaction rates has a large impact on
the stationary probability distributions. When the creation of
new particles takes place with a small rate �see the black
lines in Fig. 1�, configurations with only few particles are the
most likely. This is different when the creation rate is large,
as then configurations with a large number of occupied sites
have an increasing weight �see the cyan �light gray� lines in
Fig. 1�. A corresponding behavior is observed when chang-
ing the rate �. On the other hand, however, a change in the
value of the diffusion constant D mainly changes the distri-
butions quantitatively �see Figs. 1�c� and 1�d��.

Even though there are visible differences in the stationary
probability distributions between Figs. 1�a� and 1�c�, it is not
possible to guess from these stationary probabilities alone
whether the system is in equilibrium, as it is the case for
model 1, or whether we are dealing with a nonequilibrium
system with a fully irreversible reaction scheme, as for
model 3. The stationary probability distribution does not al-
low by itself to characterize unequivocally nonequilibrium
steady states.

Instead of analyzing one by one the stationary probability
currents for various configuration pairs, it is more convenient
to look at the global quantity �40�

K = �
i,j;i�j

�K��Ci,Cj�� . �3�

In Fig. 2�a�, we show the dependence of K on the value of
the creation rate h for fixed values of � and D. Obviously, the

dependence is very different for the different models. In the
equilibrium model 1, one does not have any nonvanishing
stationary probability currents, and K is zero for all values of
the reaction and diffusion rates, as expected. This is different
for the nonequilibrium systems, which are characterized by
nonvanishing stationary probability currents. Interestingly,
the value of K decreases in model 2 for larger h, whereas for
models 3 and 4 it increases as a function of h. In order to
understand this difference in behavior, we recall that for
larger values of h configurations with a large number of par-
ticles have an increased stationary probability. As a result,
free sites will have with high probability occupied neighbor-
ing sites, and the creation process 0→A effectively equals
the process A→2A. This is, however, exactly the reversed
reaction to the annihilation process of model 2, which ex-
plains why for large h the behavior of model 2 approaches
that of an equilibrium system. For models 3 and 4, however,
all reactions remain irreversible and K keeps on growing.

In Fig. 2�b�, we plot K as a function of the parameter �
=��=�h for the modified models 2�, 3�, and 4� for which we
allow the reversed reactions to take place. As a result, all
reactions are now reversible, but for all cases we are still out
of equilibrium as long as ��1. Increasing � decreases the
distance to equilibrium, which is finally reached for �=1
when all reactions and the corresponding reversed reactions
are taking place with the same rate.

This discussion of the stationary probability distributions
and of the stationary probability currents shows that it is not
possible to characterize in an unambiguous way a nonequi-
librium system solely through its stationary probability dis-
tribution. Much information is contained in the stationary
probability currents, which do allow to distinguish between
the properties of equilibrium, weakly nonequilibrium, and
strongly nonequilibrium systems. Therefore, these currents
allow to quantify the distance to equilibrium, making them a
useful tool for the characterization of nonequilibrium sys-
tems.
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FIG. 1. �Color online� The stationary probabilities for �a� model
1, �b� model 2, and ��c� and �d�� model 3. The common parameter is
�=1, whereas D=1 in �a�–�c� and D=5 in �d�. The system size is
L=8. The configurations are grouped by the total number of par-
ticles in the system, with the empty configuration on the left and the
fully occupied lattice on the right.
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FIG. 2. �Color online� The total probability current K �a� as a
function of the creation rate h for models 1, 2, 3, and 4, and �b� as
a function of �=��=�h for models 2�, 3�, and 4�. In all cases, �
=1 and D=1. In �b�, the creation rate is h=2. The data are for
systems with L=8 lattice sites.
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III. TRANSIENT FLUCTUATION RELATIONS

Having discussed the steady-state properties of reaction-
diffusion models, we now focus on the characterization of
the transient behavior when the systems are brought out of
stationarity and are then allowed to relax to a new steady
state. We are realizing this through a protocol in which we
change one of the reaction rates. Experimentally, a change in
rates of chemical reactions can be achieved by changing the
temperature, for example. In our protocol, we change one of
the rates r from an initial value r0 to a final value rM in M
equidistant steps of length 	r, yielding for the reaction rate
the values ri=r0+ i	r with i=0, . . . ,M. We assume that at
every step, only one reaction or diffusion process takes
place.

In the following, we discuss mainly numerical exact re-
sults for small one-dimensional systems. This numerical ex-
act approach is rather straightforward and is summarized in
the Appendix. Larger systems can be studied along the same
lines through numerical simulations, but this must be done
with some care in order to guarantee a sufficient sampling of
rare events �41�.

A. Observables

We discuss in the following two observables, which differ
by the fact that for one of the variables microscopic revers-
ibility has to be assumed, whereas for the other no such
assumption has to be made. For a system that is microscopic
reversible, as, for example, a system that fulfills detailed bal-
ance, we will discuss the difference between these two quan-
tities explicitly.

In order to define these quantities, let us first suppose that
the system is in a steady state. Starting from a configuration
C0, the system is in the configuration Ci at step i, such that
after M steps the system has performed the following path in
configuration state X=C0→C1→¯→CM−1→CM. The
probability for this path is

P�X� = Ps�C0� �
i=0

M−1

��Ci → Ci+1� , �4�

where ��Ci→Ci+1� is the transition probability from con-
figuration Ci to configuration Ci+1. Denoting the reversed

path by X̃=CM →CM−1→¯→C1→C0, one then defines
for Markovian systems the quantity �8,30�

Rss = ln
P�X�

P�X̃�
= ln

Ps�C0�
Ps�CM�

+ �
i=0

M−1

ln
��Ci → Ci+1�
��Ci+1 → Ci�

. �5�

When the system is driven out of stationarity, we can gener-
alize this definition to a time-dependent reaction rate, yield-
ing

R = ln
Ps�C0,r0�

Ps�CM,rM�
+ �

i=0

M−1

ln
��Ci → Ci+1,ri+1�
��Ci+1 → Ci,ri�

, �6�

where Ps�Ci ,ri� is the probability to find the configuration Ci
in the stationary state, corresponding to the value ri of the
reaction rate r, and ��Ci→Ci+1 ,ri+1� is the transition prob-
ability from Ci to Ci+1 at step i+1.

A closer look at the observable R reveals that its definition
requires that if ��Ci→Ci+1 ,ri+1��0 than ��Ci+1→Ci ,ri�
also has to be nonzero. However, in some of our reaction-
diffusion models, this condition is not fulfilled as micro-
scopic reversibility is broken, and we cannot use R to study
them. Hatano and Sasa �12� proposed a different quantity
that is closely related to R but that does not assume micro-
scopic reversibility. Adapting this quantity for systems driven
out of stationarity �42�, we can write it in the following way
�36�:


 = �
i=0

M−1

ln� Ps�Ci,ri�
Ps�Ci,ri+1�	 . �7�

The quantity 
 has been called the driving entropy produc-
tion in �42�.

For a system with microscopic reversibility, we can derive
a relation between R and 
. With the help of the probability
current

K��Ci,Ci+1,ri+1� = ��Ci+1 → Ci,ri+1�Ps�Ci+1,ri+1�

− ��Ci → Ci+1,ri+1�Ps�Ci,ri+1� , �8�

we can write Eq. �7� for 
 in the following form:


 = R − �
i=0

M−1

ln�−
K��Ci,Ci+1,ri+1�

Ps�Ci+1,ri+1���Ci+1 → Ci,ri�

+
��Ci+1 → Ci,ri+1�
��Ci+1 → Ci,ri�

	 , �9�

which reveals that the difference between R and 
 is com-
posed of terms which have very different physical origins.
The first term in the ln in Eq. �9� is due to nonvanishing
probability currents between different configurations and is
therefore characteristic for nonequilibrium states. The second
term is nontrivial only in transient processes as it accounts
for a shift in the reversed transition probability. This term
reduces to the trivial value 1 in case one remains in a given
steady state, with ri+1=ri=r0 for all i. If this steady state is,
in addition, an equilibrium state, the probability currents are
all vanishing, and one has R=
=0.

It is easy to show �12,14,42� that for transient processes,
both quantities fulfill an integral fluctuation theorem 
e−R�
=1 and 
e−
�=1, where the average is taken over all possible
histories when driving the system out of a general steady
state. For a system that is initially in an equilibrium steady
state, the relation 
e−
�=1 reduces to the Jarzynski relation
�4� as then 
=��W−	F�, where W is the work done on the
system, 	F is the free-energy difference between initial and
final states, and � is the inverse temperature. The difference
Wd=W−	F is the dissipative work.

B. Probability distributions

In systems with detailed balance, an exact fluctuation re-
lation is obtained when plotting the ratio between the prob-
ability distributions PF��Wd� and PR�−�Wd� of the dissipa-
tive work Wd done on the system in the forward and reversed
processes �10�,
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PF��Wd�
PR�− �Wd�

= e�Wd. �10�

Recalling that for systems with detailed balance, we have the
identity 
=Wd, it is tempting to ask whether for 
 an exact
fluctuation theorem, such as Eq. �10�, can also be encoun-
tered for a system initially in a nonequilibrium steady state.
In fact, this is not the case: the absence of detailed balance in
a nonequilibrium steady state entails nonzero probability cur-
rents, and no simple relation, such as the relation �10�, exists
for 
 in this case. As we shall discuss below, the correspond-
ing fluctuation ratios yield systematic deviations from the
simple behavior encountered in systems with detailed bal-
ance, these deviations containing nontrivial information on
the nonequilibrium system at hand.

However, before analyzing these ratios of probability dis-
tributions, we shall first discuss the probability distributions
themselves.

Figures 3–6 show typical examples for the probability
distributions of R and 
 when changing the creation rate
from an initial value h0 to a final value hM in M steps �we
only show the case of a varying creation rate h, but the
following discussion can be made along similar lines when
changing the value of the annihilation rate ��.

Figure 3 shows the probability distributions of R for three
cases that fulfill microscopic reversibility: models 1, 2�, and
3�. These different probability distributions are not Gaussian

but are characterized by a rather irregular structure. Their
shape depends on the dynamics of the different models ex-
pressed by the different reaction schemes. It is, however, not
straightforward to relate specific features of the probability
distributions to the different reactions. It is important to note
that the peaks dominating these distributions do not have
their origin in the noisiness of some numerical data but are
real as we are using a numerically exact method. In addition,
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FIG. 3. �Color online� Probability distributions for the quantity
R when the creation rate is changed in M =6 equidistant steps from
0.2 to 1.4 �PF�R�, black curve� or from 1.4 to 0.2 �PR�−R�, green
�gray� curve�. The data have been obtained for a system with L
=8 sites, with D=5 and �=1. �a� Model 1, �b� model 2� with �
=0.1, and �c� model 3� with �=0.1.
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FIG. 4. �Color online� The same as in Fig. 3, but now for model
3� and two different values of the diffusion rate. �a� PF�R� from the
forward process and �b� PR�−R� from the reversed process.
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FIG. 5. �Color online� Probability distributions for the quantity

 when the creation rate h is changed in M =6 steps from 0.2 to 1.4
�PF�
�, black curve� or from 1.4 to 0.2 �PR�−
�, green �gray�
curve�. The data have been obtained for a system with L=8 sites,
with D=5 and �=1. �a� Model 1, �b� model 2, �c� model 3, �d�
model 2� with �=0.1, and �e� model 3� with �=0.1.
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FIG. 6. Main contributions to the probability distributions for 

in the forward and reversed processes. The black lines show the full
probability distributions, whereas the gray lines show the contribu-
tions coming from ��a� and �c�� trajectories in configuration space
with only diffusion steps and no reactions and ��b� and �d�� from
trajectories, where exactly one reaction takes place that changes the
number of particles in the system. The data are for model 3 with
D=10, h0=0.2, 	h=1.2, and �=1. The system size is L=8 and the
driving length is M =6.
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our numerically exact method also allows us to circumvent
any issues that might appear due to an insufficient sampling
of rare events. This will be of importance in the next section
when we discuss the ratios of the forward and reversed prob-
ability distributions.

The probability distributions show a strong dependence
on the system parameters. This is illustrated in Fig. 4, where
we compare for model 3� the distributions obtained for dif-
ferent values of the diffusion rate. When we increase the
diffusion rate, the general shape of the probability distribu-
tion changes and, in addition, a large number of distinct
peaks appear.

The probability distributions for 
 differ markedly from
those for R �see Fig. 5�. This was expected as the main dif-
ferences between both quantities are the probability currents,
which are nonzero for a system that is out of equilibrium. It
is only for the equilibrium model 1 that the distributions for
both quantities are similar. Interestingly, the probability dis-
tributions for 
 for both the forward and reversed processes
are characterized by the presence of prominent peaks. An
increase in the diffusion constant strongly amplifies these
peaks but does not change the overall shape of the probabil-
ity distributions. The fact that the heights of the peaks de-
pend on the value of the diffusion constant indicates that
these peaks are related to trajectories in configuration space
that are dominated by diffusion steps and not by reactions. In
Fig. 6, we verify for model 3 that the main contributions to
the peaks for a drive of length M =6 indeed come from the
trajectories, where only diffusion takes place such that the
number of particles is constant along these trajectories. The
subleading contribution, also shown in Fig. 6, comes from
the trajectories where a single reaction takes place, which
changes the number of particles in the system. Because the
peaks are dominated by trajectories with pure diffusion, the
positions of the peaks are the same for the forward and re-
versed processes, the leftmost peak resulting from the diffu-
sion of a single particle in the system, whereas the rightmost
peak is due to the diffusion of a single empty site in the
system.

Before closing this section, we remark that in �42� similar
peaks have been observed in the probability distributions of
the driving entropy production as well as of other related
quantities in a model for electron transport through a single
level quantum dot.

C. Fluctuation ratios

Having just discussed the probability distributions of the
quantities R and 
, we now move on and study the fluctua-
tion ratios formed by these probability distributions. For a
system driven out of an initial equilibrium state and fulfilling
detailed balance, Crooks showed the exact relation �10� to
exist between the probability distributions of the dissipative
work measured in the forward and time-reversed processes.
This remarkable result can be extended to systems that are
still reversible microscopically but that do not fulfill detailed
balance any more �16�. As illustrated in Fig. 7 for models 2�
and 3�, the ratios of the probability distributions for R show
a simple exponential dependence on R. The perfect exponen-

tial obtained from our data nicely validates our numerical
exact approach. Obtaining a plot of similar quality through
Monte Carlo simulations is difficult as rare events are then
hard to measure.

Even though in the absence of microscopic reversibility R
is ill defined, this is different for 
 as this quantity exclu-
sively involves the steady-state probabilities �see Eq. �7��.
For an equilibrium system, 
 fulfills an exact fluctuation
theorem as it then reduces exactly to the dissipative work. As
shown in Fig. 8 for model 1, an exponential relation is in-
deed obtained for all parameter values as well as for different
driving processes h�t�.

However, for a system with nonequilibrium steady states,
no exponential detailed fluctuation relation is expected for 
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FIG. 7. �Color online� Fluctuation relation for the observable R
for model 2� and model 3� for different values of the parameter �.
The parameters in this calculation are h0=0.2, 	h=1.2, �=1, and
D=5. The system size is L=8 and the driving length is M =6.
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FIG. 8. �Color online� Fluctuation relation for the observable 

for model 1 with �a� different values of D and �b� different ways of
changing the parameter h�t� with D=1. The driving process usually
studied in this paper and which yields the data shown in �a� is
h�t�� t. The parameters used in these calculations are h0=0.2, 	h
=1.2, and �=1. The system size is L=8 and the driving length is
M =6.
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as this quantity does not contain the information on nonequi-
librium currents �see Eq. �9��. We show in Fig. 9 ratios of the
probability distributions of 
 for models 2 and 3. For model
2, the deviations from the exponential are random and no
pronounced dependence on system parameters, as, for ex-
ample, the diffusion rate D, is observed. For model 3, how-
ever, a qualitatively different behavior is encountered and
systematic deviations in the form of oscillations are ob-
served. Similar oscillations are also observed for model 4,
where three neighboring particles are destroyed in the anni-
hilation process. Interestingly, the amplitudes of these oscil-
lations increase for increasing diffusion rates. At first, one
might think that this increase in peak height when increasing
D should be related to the increase in the peaks in the prob-
ability distributions themselves �see the discussion in the
previous section�. However, this is too simplistic as an in-
crease in peak heights in the probability distributions is also
observed for models 1 and 2, for which we do not observe
the corresponding behavior in the fluctuation ratios. What is
different between models 1 and 2, on one hand, and models
3 and 4, on the other hand, is that for the former models any
change in the forward and reversed probability distributions
is compensated when forming the ratio �this compensation is
exact for model 1 and approximate for model 2�, whereas for
the latter models this compensation is only partial, such giv-
ing rise to peaks also in the fluctuation ratios.

Before discussing the origin of this difference, let us first
have for model 3 a closer look at the peaks in the fluctuation
ratio. We first note that the positions of these peaks are not
identical to the positions of the extrema in the probability

distributions �see, for example, Fig. 6�. In Table II, we com-
pare the positions of the maxima and minima in the fluctua-
tion ratio with the peak positions in the probability distribu-
tions. The observed offset means that the peaks in the
probability distributions for the forward and reversed pro-
cesses compensate each other when forming the ratio but that
the compensation is only partial away from the peaks. Re-
calling that the peaks result from trajectories in configuration
space with only diffusion steps and that trajectories with re-
actions make up the part between the peaks, we can conclude
that reactions are responsible for the peaks in the fluctuation
ratios. In order to verify this assumption, we analyzed the
contributions to the fluctuation ratio coming from the differ-
ent types of trajectories. We show in Fig. 10 that the ob-
served minima and maxima are indeed mainly due to the
trajectories with a single reaction process. For this, we com-
pare the fluctuation ratio with the quantity �F�
� /�R�−
�,
where ��
� is the probability distribution for all trajectories
having �a� only diffusion steps or �b� exactly one reaction
process. Obviously, the peaks in the latter ratio coincide with
the peaks in the fluctuation ratio.

As a second interesting observation, we note that the os-
cillations in the fluctuation ratios are not restricted to cases
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FIG. 9. �Color online� Fluctuation ratios for the observable 

for �a� model 2 and �b� model 3 and different values of the diffusion
constant D. Whereas in model 2 only random deviations from a
simple exponential behavior are observed, systematic deviations
show up for model 3. This is highlighted in �c� and �d�, where we
subtract 
 from the logarithm of the fluctuation ratio. The light gray
lines indicate a simple exponential dependence. The parameters
used in this calculation are h0=0.2, 	h=1.2, and �=1. The system
size is L=8 and the driving length is M =6.

TABLE II. Positions of the maxima in the PDs and of the
maxima and minima in the FR for model 3, with D=5, h0=0.2,
	h=1.2, and �=1. The system size is L=8 and the driving length is
M =6.

PD maxima FR maxima FR minima

−1.63 −1.78 −1.5

−0.61 −0.72 −0.38

0.60 0.50 0.82

2.02 1.89 2.25

3.64 3.44 3.84
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FIG. 10. �Color online� Comparison for model 3 of the fluctua-
tion ratio �black line� with the ratio �F�
� /�R�−
� �cyan �light
gray� line�, where ��
� is the probability distribution of 
 for all
trajectories with �a� only diffusion steps and �b� exactly one reac-
tion process. Note that for trajectories with only diffusion, few val-
ues of 
 can be realized. The common parameters are h=0.2, �
=1., M =6 and L=8, and D=5.
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where microscopic reversibility is broken but are much more
widespread. As is shown in Fig. 11 for model 3� �the same
holds for model 4��, peaks in the fluctuation ratios also show
up in some systems where all reactions are reversible.

In order to understand the origin of these oscillations, we
need to go back to the different reaction schemes summa-
rized in Table I. The configuration space of a reaction-
diffusion system can be thought to be composed of smaller
units formed by the configurations with a common number N
of particles. A diffusion step conserves the number of par-
ticles, thereby, connecting two configurations in the same
unit. A passage from one unit to another always involves a
change in particle number and is therefore exclusively due to
a reaction process. This is sketched in Fig. 12. Keeping this
in mind, a fundamental difference emerges between models 1
and 2, on one hand, and models 3 and 4, on the other hand.
In the former systems, every reaction changes the particle
number by 1, 	N= 
1. In the latter systems, however, also
larger changes in the particle number happen in the annihi-
lation process, with 	N=−2 for model 3 and 	N=−3 for
model 4. As a consequence, loops in configuration space that
connect a unit with constant N with itself and that involve
reactions will display an asymmetry in the number of cre-
ation and annihilation processes. Thus, for model 3 the
smallest loop contains two creation processes and one anni-
hilation. This effect is still present, even though in a weaker
form, when we add the backreactions and end up with a
microscopically reversible model, such as model 3�, with a
variable number of particles added or subtracted in the dif-
ferent reactions. It is this difference in the number of par-
ticles created in a creation process or destroyed in an anni-
hilation event that yields contributions to the probability
distributions, which are not compensated in the fluctuation
ratio.

IV. DISCUSSION

Characterizing the out-of-equilibrium properties of inter-
acting many-body systems remains one of the most challeng-
ing tasks in contemporary physics. The recent advent of ex-
act fluctuation and work theorems yielded some excitement
in the community as it indicated a possible way of charac-
terizing large classes of nonequilibrium systems.

In our work, we try to characterize diffusion-limited reac-
tions both in their nonequilibrium steady state and in the
transient state when the systems are driven out of stationar-
ity. For systems in their steady state, we confirm the expec-
tation that probability currents allow to distinguish between
equilibrium and nonequilibrium steady states. In addition,
they also allow to define a global quantity that quantifies the
distance to equilibrium. This way of characterizing nonequi-
librium steady systems remains valid even when microscopic
reversibility is broken, as it is the case for many reaction-
diffusion systems.

The situation is more complicated if one wishes to char-
acterize reaction-diffusion systems through fluctuation and
work theorems. If one studies a system for which micro-
scopic reversibility is fulfilled, one can define a worklike
quantity, our quantity R �see Eq. �6��, for which exact de-
tailed fluctuation theorems not only hold in the steady states
but are also valid when the system is driven out of station-
arity through time-dependent reaction rates. In the absence of
microscopic reversibility, however, R cannot be used as it is
no longer well defined. Instead, we propose to use the driv-
ing entropy production 
 �see Eq. �7��, initially introduced in
�12,42�, as this quantity exclusively uses stationary prob-
abilities and therefore remains well defined even in the ab-
sence of microscopic reversibility. Whereas the driving en-
tropy production always fulfills a global fluctuation theorem
�12,42�, it only fulfills a detailed fluctuation theorem for sys-
tems with equilibrium steady states. At first look, this seems
to strongly reduce the usefulness of his quantity for the char-
acterization of systems with nonequilibrium steady states.
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ε = 0.05

FIG. 11. �Color online� Fluctuation relations for model 3� and
different values of �. The values of the parameters are D=5, h0

=0.2, 	h=1.2, and �=1. The system size here is L=10 and the
driving length is M =10. These data have been obtained through
Monte Carlo simulations.
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FIG. 12. �Color online� Schematic plot of the configuration
space for models 1, 2, and 3, where configurations are grouped by
the number of particles in the system N. In a diffusion step, the
system goes from one configuration to another in the same unit
without changing the particle number. Passages between different
units are due to reaction processes. For models 1 and 2, one always
has that 	N= 
1. This is different for model 3 �and 4�, where
different reactions yield different changes in the number of particles
in the system.
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However, as we showed in this paper, the deviations of the
fluctuation ratios for 
 from a simple exponential behavior
do contain nontrivial information on the trajectories in con-
figuration space. Indeed, in cases where the change in the
number of particles is different for different reactions, we
observe systematic deviations from a simple exponential be-
havior. These deviations, which take the form of peaks su-
perimposed on an exponential, mainly result from trajecto-
ries in configuration space, where exactly one reaction takes
place.

It is not an easy task to quantitatively relate the peak
heights and the peak positions to the values of the system
parameters. For this, a much more in-depth study is needed,
where all the parameters are varied in a systematic way �41�.

Whereas the driving entropy production 
 remains a well-
defined quantity even in the absence of microscopic revers-
ibility, we need to mention that in many cases this could be a
quantity that is difficult to measure as the knowledge of the
stationary probability distribution of the system is required.
As a consequence, the practical importance of 
 could be
restricted, especially for experimental systems where the sta-
tionary probability distribution is often not easily accessible.

How general are the results found in this work? Based on
the reaction schemes discussed in this work and given in
Table I, we expect the peaks to appear in the fluctuation
ratios for 
 for any reaction-diffusion system that allows for
a variable number of particles to be created or destroyed in
the different reactions. This also encompasses more compli-
cated systems with two or more particle types. In addition,
signatures of the same type should also be observed for other
system classes with a configuration-space topology that is
similar to that of the reaction-diffusion systems �i.e., com-
posed by groups of configurations that are only connected in
a very specific way� and with a similar asymmetry in the
configuration-space trajectories. An extension of our work
along these lines is planed for the future.
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APPENDIX

In order to compute the probability distribution of 
 �see
Eq. �7��, when changing some rate r from its initial value r0

to the final value rM in M steps, with ri=r0+ i
M �rM −ri�, i

=0, . . . ,M, we first need to know the stationary probability
distributions for any value ri. This is easily done by deter-
mining the null eigenvector of the Liouville matrix. We then
need to generate all possible sequences of configurations
�paths in configuration space� X=C0→C1→¯→CM−1
→CM, where only one reaction or diffusion takes place at
every step. Starting from every possible initial configuration,
we have to built up a tree structure to all the configurations
that can be reached in M steps with nonzero probability. This
is done recursively by a standard depth-first search algorithm
that ends when we reach the Mth step. We now have to
attach a probability to every one of these generated paths.
For this, we are multiplying the probability to select the ini-
tial configuration C0 with the product of the M transition
probabilities,

PF�X� = Ps�C0,r0� �
i=0

M−1

��Ci → Ci+1,ri+1� . �A1�

Having now determined every path and its probability, we
need, in addition, the values of 
 along these different paths,
which we obtain through the equation


̃�X� = �
i=0

M−1

�ln Ps�Ci,ri+1� − ln Ps�Ci,ri�� , �A2�

where Ps�Ci ,ri� is the stationary probability to find the con-
figuration Ci at the value ri of the rate r. Putting everything
together, the probability distribution is finally obtained
through the expression

PF�
� = �
X

PF�X���
̃�X� − 
� . �A3�

In addition to the just-described forward process, we also
study the reversed process, where we start in configuration
CM with the rate rM before changing the reaction rate in M
steps to its final value r0. The probability distribution for this
process is then

PR�
� = �
X̃

PR�X̃���
̃�X̃� − 
� , �A4�

with

PR�X̃� = Ps�CM,rM� �
i=0

M−1

��CM−i → CM−1−i,rM−1−i� . �A5�

5 6 7 8 9 10
timesteps M

10
0

10
1

10
2

10
3

10
4

10
5

ca
lc

ul
at

io
n

tim
e

D=1

D=0

FIG. 13. �Color online� Exponential growth of the calculation
time in function of the number of steps for model 1 with L=6 sites,
where the creation rate h was changed between h0=0.2 and hM

=1.4. For this calculation, we set �=1.0 and considered both van-
ishing �D=0� and nonvanishing �D=1� diffusion rates.
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In Sec. III, we discuss not only the quantity 
 but also the
quantity R defined by Eq. �6�. For this second quantity, the
procedure is exactly the same, only the calculation of the
values of 
 for the different paths has to be replaced by the
values of R.

This numerical exact approach is limited to small system
sizes L and few steps M, as the number of paths grows
exponentially with both L and M �see Fig. 13�. For example,
for L=6 the number of paths increases from 404 for M =2 to
8.6�108 for M =9.
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